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A NUMERICAL SOLUTION FOR THE MINIMUM
INDUCED DRAG, AND THE CORRESPONDING LOADING,
OF NONPLANAR WINGS - FINAL REPORT

By J. L. Lundry

The McDonnell Douglas Corporation

ABSTRACT

A numerical procedure has been developed for the
accurate computation of the minimum induced drag,
and the associated loading, of nonplanar wings.
The minimum 1induced drag and the loading are
determined by the solution of a potential problem
about the shed vortex wake in the Trefftz plane.
The potential problem is analyzed in an auxiliary
mapping plane that 1is related to the physical
plane by the Schwarz-Christoffel transformation;
the procedure can therefore be applied to configu-
rations with front views that can be approximated

by straight line segments. The success of the
method depends on an iteration that converges
satisfactorily for most cases. Comparisons of

results of the method with results of known test
cases show that errors in the minimum induced
drag and in the corresponding loading are of the
order of 10~“ when the method is programmed in
single precision arithmetic for an IBM 7094.
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A NUMERICAL SOLUTION FOR THE MINIMUM
INDUCED DRAG, AND THE CORRESPONDING LOADING,
OF NONPLANAR WINGS -~ FINAL REPORT

by J. L. Lundry

The McDonnell Douglas Corporation

SUMMARY

A numerical procedure has been developed for the accurate computa-
tion of the minimum induced drag, and the associated loading, of nonplanar
wings. The minimum induced drag and the loading are determined by the
solution of a potential problem about the shed vortex wake in the Trefftz
plane. The potential problem is analyzed in an auxiliary mapping plane
that is related to the physical plane by the Schwarz-Christoffel trans-
formation; the procedure can therefore be applied to configurations with
front views that can be approximated by straight line segments. Previously,
the main computational difficulty with this approach was the determination
of the mapping constants. Two methods to obtain these constants are pre-
sented. By means of the rheoelectric analogy to potential flow, the
mapping constants can be measured with an analog field plotter. The
measured values contain small experimental errors, and are used as initial
values for an iteration that determines the mapping constants accurately.
The mapping derivative is integrated numerically to obtain an approximate
Trefftz-plane geometry; deviations of this geometry from the desired
Trefftz-plane geometry are used to calculate corrections to the mapping
constants,

Alternatively, the mapping constants can be determined without re-
sorting to analog experimentation by evaluating them for a series of
geometrically related configurations that ends with the desired configu-
ration. The mapping constants for each member of the series are used as
the equivalent of experimental values for the next member of the series,
whose mapping constants can then be determined with the iteration scheme
employed in the experimental method. The series starts with the mono-
plane degenerate equivalent of the desired configuration, for which the
mapping constants are known. This procedure is successful if each member
of the series differs geometrically from its neighbors by a small amount.

Once the mapping constants are known, the minimum induced drag and
the associated loading are determined by quadrature.

The procedure has been applied to seven nonplanar lifting configura-
tions. resulting in the development of Computer Program 55VD in the
FORTRAN 1V language for use on an IBM 7094. Program 55VD has been con-
verted to FORTRAN 2.0 for use on the Langley Research Center's CDC 6000
series digital computers. This report summarizes the development of
Computer Program 55VD.



INTRODUCTION

To increase aircraft efficiency, the use of existing aircraft com-
ponents to lower induced drag is being considered. Such components
include pylons, engines, fences, and other surfaces that can support the
aerodynamic loads required for minimum induced drag. Nonplanar 1ifting
configurations that produce minimum induced drag can be studied in three
steps:

(1) For a given configuration (wing alone, wing with end plates,
etc.), determine the shed vorticity distribution to minimize
induced drag for a specified Tift.

(2) Given (1), compute the minimum induced drag.

(3) Given (1), compute the geometry (camber and/or twist) to
produce the minimum induced drag loading.

This report deais with steps (1) and (2) for a series of nonplanar
wings with varying arrangements of auxiliary 1ifting surfaces (i.e.,
pylons, fences, and end plates) by applying Munk's theory of minimum
induced drag.

Munk's Theory

In Reference 1, Munk develops a theory for the minimum induced drag,
and the associated loading, of arbitrary 1ifting configurations. All load-
ings are assumed light, so that velocity perturbations are small and the
vortex wake in the Trefftz plane may be assumed undistorted. The loadings
can be projected onto a plane normal to the free-stream velocity without
changing the induced drag of the T1ifting system (Stagger Theorem). Munk's
criterion for minimum induced drag is illustrated in Figure 1, and requires
the induced velocity normal to the projected Toadings to be proportional
to the cosine of the angle of Tlateral inclination of the projected load-
ings. Munk further demonstrates that the Toading to satisfy this criterion
can be found by solving a potential flow problem about the vortex wake in
the Trefftz plane, in which the undisturbed flow is paralliel to the down-
wash. The required Toading is locally proportional to the potential
difference across the wake and is normal to the wake.

Applications of Munk's Theory

Munk applies his theory to the monoplane, and obtains the classic
result that a constant downwash across the span produces the minimum in-
duced drag

2
D = ___£_7? (1)
4 7 gs

and is given by an elliptical distribution of load. In References 2-6,
the theory is applied analytically to nonplanar configurations consisting
of either combinations of a monoplane with vertical fences or a wing with
part-span or full-span dihedral. In Reference 7, the rheoelectric analogy
to potential flow is exploited to determine experimentally loadings that
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satisfy Munk's criterion for complex nonplanar 1ifting configurations; the
1ift and the minimum induced drag are then evaluated numerically. Unfor-

tunately, the numerical results of this method can contain significant errors
as shown by Reference 8.

Reference 8 obtains a solution to the potential problem in an auxiliary
mapping plane related to the real (Trefftz) plane by the Schwarz-Christoffel
transformation for configurations with front views that may be approximated
by straight line segments. Previously, the main computational difficulty
with this approach was the determination of the mapping constants. By means
of the rheoelectric analogy to potential flow, the mapping constants can
be measured with an analog field plotter. The measured values of the map-
ping constants contain small experimental errors, and are used as initial
values for an iteration that determines the mapping constants accurately.

An approximate Trefftz-plane geometry is obtained by numerical integration
of the mapping derivative; deviations of this geometry from the desired
Trefftz-plane geometry are used to calculate corrections to the mapping
constants. Once the mapping constants are known, the minimum induced drag
is determined by quadrature. A digital computer program was required to
obtain the numerical results of Reference 8.

This report incorporates the work of Reference 8 and describes the
following extensions:

(1) Calculation of the loading on all surfaces to produce minimum
induced drag for Configurations 1-7 (See Figure 2).

(2) Application of the numerical scheme of Reference 8 to the cal-
culation of the minimum induced drag of Configurations 6 and 7.
(The results of Reference 8 for Configurations 1-5 are included
in this report).

(3) Development of an alternative method to determine the mapping
constants so that the analog experiments could be eliminated
from the method of Reference 8.

The extensions were funded under NASA contract NAS1-7484. A user's
manual for the extended computer program ad a detailed program description
are pr?vided as supplements to this report, and may be obtained upon re-
quest.

The author wishes to acknowledge the contributions to this study of
Prof. P.B.S. Lissaman of the California Institute of Technology. Prof.
Lissaman has consulted frequently with the author since the start of this
study.

lSee request form at the back of this paper.



SYMBOLS
potentials in the real or physical plane (See Figure 3)

the i-th required geometry condition in the real plane
error in Cj

minimum induced drag

the imaginary part of

Tift

freestream velocity

potentials in the auxiliary plane (See Figure 3)

the square root of the sum of the squares of the errors
in the required geometry conditions:

- n 2
e = 2. (acy)
=

abscissa spacing parameter [See Equations (7) and (8)]
induced drag efficiency at minimum induced drag
nondimensional length of auxiliary surface

number of required geometry conditions Cj

the j-th mapping constant or potential. The potentials
are numbered in alphabetical order.

correction to pj

dynamic pressure

semispan

arc length

crossflow velocity

spanwise coordinate

complex variable in the real plane

dihedral angle in degrees

angle of lateral inclination (See Figure 1)
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v circulation (mean value is y for each load-bearing surface)

T complex variable in the auxiliary mapping plane
n nondimensional semispan coordinate
P density
¢ potential
o normal derivative of ¢
ANALYSIS

The basic theory for the minimum induced drag of nonplanar lifting
configurations is given in Reference 1 and is described in the INTRODUCTION.
A potential problem is formulated about the vortex wake in the Trefftz
plane. The problem is analyzed numerically by the method of Reference 8
in an auxiliary mapping plane related to the Trefftz plane by the Schwarz-
Christoffel transformation. First, the constants of the Schwarz-Christoffel
mapping must be determined. The minimum induced drag can then be obtained
by quadrature. Finally, the required load distribution can be obtained by
interpolation. The seven general configurations sketched in Figure 2 are
analyzed by Computer Program 55VD.

The Mapping Constants

Two methods to determine the mapping constants have been included in
Program 55VD and are described here.

Rheoelectric Analog with Iterative Correction. By means of the
rheoeTectric analogy to potential flow, the mapping constants can be
measured experimentally with an analog field plotter. The measured values
of potential contain experimertal errors, and are corrected by an itera-
tive scheme that will be explained for Configuration 5. Figure 3 shows
the Trefftz plane (also called real or physical plane) and the auxiliary
mapping plane for Configuration 5. The Schwarz-Christoffel transforma-

ticn between these planes is

I 3

(¢ - c)(z - e) -y -
d (¢ - )

Tl I ( - d)F
€ " - ae-t- T

I
™

(2)

Given the experimental values of potential a, . . . , g, the geometry in
the physical plane is evaluated by numerically integrating Equation (2).
For example, the length AB is

b

B = z5-zp- /%;—d; (3)
a



Each of the distances AB, BC, CD, DE, EF, and FG in Figure 3 can be evalu-
ated in this way, and each of the integrals has one or two integrable
singularities at the end or ends of the integration interval. If an inte-
gral has two singularities, it is evaluated in two parts of equal range so
that each numerical integral has at most one singularity. For example,
the integral for the Tength AB has singularities at a and b, and is evalu-
ated as

%(atb)

b
B = / g% dr + / %z— dc (4)
a

%(a+b)
The first integral is singular at a in the form

L(a+b) 2(2)

£ dg (5)
a (¢ - a)
and can be rewritten in the standard way as
%(atb) %(at+b) 1
f Z_(Auégld“z(a) /————;d;
3 (z - a)® s (z-2)®
(6)
%(atb)
- 1
- H=IE) sz 2(a) o - T
3 (z - a)"

P , . .
The integrand [Z(z) - Z(a)1/[z - al* is evaluated on the integration in-
terval at up to fifty points that are spaced more closely near the singu-
larity, and a modified Simpson rule is used to perform_the qua@ratgre.
If the singularity is located at the lower end of the integration interval,

the abscissa spacing is given by
_ i-|
fileu - ce v 2 gy
1] (7)

m-1i+1

Ag; =

where m 1is the number of intervals, f is given by

f... = 2Ff. (8)

subject to the Timitation fj S 1 with %] = 0,01, and ¢, and ge are the
upper and lower 1limits of the numerical 1ntegra1._ An ana]ogous spacing
of abscissae relative to the singularity is used if the singularity is

located at the upper limit.



For the example of Configuration 5, the mapping derivative contains
seven unknown constants. Six of these constants are independent (one
must_be fixed to define a coordinate origin) and determine the six lengths
AB, BC, CD, DE, EF, and FG in Figure 3. For practical reasons, the ex-
perimental values of the mapping constants are scaled linearly before they
are used to evaluate the geometry in the real plane; this linear scaling
changes only the absolute scale in the real plane and is equivalent to:
fixing one of the six independent mapping constants. For Configuration 5,
the coordinate origin and the Tinear scaling are defined by setting b = 0
and e = 1, Five of the unknown mapping constants are used as the inde-
pendent variables in a linear iteration scheme that is designed to satisfy
the five required geometry conditions:

1) The fence must close (BC = CD).
2) The inboard wing must close (AB = FG).
3) The outboard wing must close (DE = EF).

4) The fence must _have the proper length
(BC = 2[AB + DE cos r]).

5) The fence must have the proper semi-
span location (AB = n[AB + DE cos rl).

The initial values of the mapping constants are measured experimentally
with an analog field plotter. The corrections to the mapping constant
Apj are computed from

aci

ap;

-AC; = Apj (9)

where AC; 1is the error in Cj. the i-th geometry requirement. The 5x5
correction matrix 9C;j/9ps; s evaluated numerically by perturbing pj
slightly, scaling the pot%ntia]s Tinearly if pj is either b or e,
and calculating the derivative as though C;j varies linearly with pj.
For Configuration 5, the potentials a, b, d. e, and g were selected from
the seven unknown values of potential as the independent variables for
the iteration. This simple iteration scheme converges rapidly for pro-
perly chosen independent variables. For some of the seven configurations,
the set of mapping constants selected initially as independent variables
did not give convergence, and other sets were chosen. However, conver-
gence of the iteration scheme has been achieved for each of the seven
configurations considered to date.

The preceding paragraphs describe the iteration that determines accu-

rately the mapping constants for Configuration 5. Similar iterative schemes
determine the mapping constants for Configurations 1-4, 6, and 7. Listed in
Tables 1 and II are the parameters of significance to the iteration that
vary with configuration. Table I presents the Schwarz-Christoffel mapping
derivative, a definition of the linear scaling in the auxiliary mapping
plane, and a list of the mapping constants used as independent variables in
the iteration. Table II presents the required geometry conditions in the
real plane for each of the seven configurations.
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Table I

Mapping Derivative, Definition of Linear Scaling,
and Independent Variablies in Iteration Scheme

Configuration Schwarz - Christoffel Defiqition Ind dent
(Segug?::re 2) Mapping Derivative %% Ogcé}?ﬁgr 3ai?§2122
(z - c){z - e)
1 [(c-a)(z-b)(c- (- N a=o,e=1 2,0,d,f
(C - C)(C - f)(?; = h) T d = 0, g = 1 a,b,d,e,f,g,h
2 [(z - a)(z - b)(zc - d)(z - e)(z -~ g)(g - )77
(¢ - b)(z - e)
3 T c=0,e=1 b,d,e,f
[(z - a)(z - c)(t - d)(z - F)]* !
(z - c)(z - e)(z - 9g) [‘
4 A3 d=o, g = 1 ! aabsc’esgshs'i }
[(z - a)(z = b)(z - d)(z -~ f)(z - n)(g - 1)1° w\ |
ANV T ; {
: (z - c)(z - e)(t - d)" (¢ - f£) T b=o0,e=1 ‘ a,b,d,e,g \
[(z - a){z - b)(z - g)T* |
(- e - 9) <c-e§ |
6 T > b=o, f=1 a,b,d,e,f,g
[(z - a){z - b)(z -d)(z - h)]* \z-g :
, e - d)(c-e)(E-g)7 o a=o0,e=1 | b,c,d,fgh

[(z - a)(z - b)(z - c)(& - f)(z - h)]




Table II

Required Geometry Conditions in Trefftz Plane

Refer to Figure 2

Required Condition Cj

Config
Numerl 5oyl 4=2] =3 i=4 i=5 i=6 i=7
1| 5000 |mETEEF| M- oFF 5C = 1 EF
2 BC=CD | EF =FG |AB+DE+GH=HT AB = ngHT AB+DE =ng HT BC = ¢ HT EF = g4 HT
i _— —  SH —
3 | TBBC | DE=EF |CD=9,78 | DE=2T78

4 BC=CD | FG=GH |AB+DE=EF+HI|AB = n;(AB + DE) | HT = ny(EF + HI) | BC = 2;(AB + DE) FG=q,(AB+DE)

cosr') |AB = n(AB+DEcos T)

6 |AB+DE=GH| BC=CD | EF=F RB=n; (GH+FG cos T) |GH=n,(GH+FG cos r)|BC=~(GH*+FG cos T) |
7 PB=GH | BC=FG |DE =CD+EF BC =12 AB =12 R FF=9.O7E




Successive Solution Scheme. A numerical method has been developed
to determine the unknown constants of the Schwarz-Christoffel mapping
without resorting to rheoelectric analog experimentation. The mapping
constants are determined for a series of geometrically related configura-
tions thatends with the desired configuration. The final values of the
mapping constants for each member of the series are used as initial values
for the next member of the series, whose mapping constants can then be
determined with the iteration scheme developed for the rheoelectric analog
method. The series is started with the monopiane degenerate equivalent
of the desired configuration, for which the mapping constants can be
determined from the solution for potential about a monoplane that is
given in Reference 9.

The successive solution scheme has been applied to Configurations
1-7 of Figure 2, and operates successfully for Configurations 1-6 if each
member of the series of related configurations differs geometrically from
its neighbors by a small amount. However, the iteration for the mapping
constants usually does not converge for Configuration 7 if the parameters
£, %, and 2, of Figure 2 are small. Therefore, the monoplane starting
solution is replaced in the successive solution scheme by a solution for
Configuration 7 with 2 = 0.04 and &4 = 25 = 0.01. The successive solution
scheme operates successfully for Configuration 7 if values of the desired
geometry are larger than those of the starting solution configuration; the
scheme 1is usually unsuccessful if the desired geometry parameters are
significantly smaller than those of the starting solution. The supple-
ments to this report describe in detail the known limitations of the
successive solution scheme for Configurations 1-7.

The Minimum Induced Drag

Once the mapping constants are known, the minimum induced drag is
calculated in the terms of the efficiency k, where

D = —————iii——— (10)

4 7ws2qk

In terms of the crossflow potential in the Trefftz plane,

L pqu edy (11)

and

[we)
1}

% J eends (12)

the appropriate integrals being taken about the wake. Munk's criterion for
minimum induced drag is

¢n = Wy COS B (13)
so the minimum induced drag efficiency becomes
1
k = ——2"jk¢dy (14)
) W0
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If the expression for k is transformed into the auxiliary mapping plane
for Configuration 5,

1 Sy
Z
k = —5 1 fCHEd'; (15)

s a

Wwhere I means "the imaginary part of". The integration is performed
numerically with the technique used to evaluate the geometry integrals
similar to the integral of Equation (3). However, Equation (15) does

not need to be integrated numerically over the entire interval from a to

g to evaluate k for Configuration 5. The interval is divided into regions
identical to those used to evaluate geometry in the real plane. The inte-
grals for regions that correspond to vertical sections of the vortex wake
are zero, since Munk's criterion (Figure 1) specifies zero velocity normal
to such sections. Similar regions occur in the integrals that evaluate k
for the other configurations of Figure 2.

The Loading to Produce Minimum Induced Drag

Once the mapping constants are known, the potential may be computed
in the physical plane as a function of geometric location. The required
loading 1is proportional to the potential difference across the Trefftz-
plane vortex wake.

Since the complex potential is conserved between the real plane and
the auxiliary mapping plane, the potential is identical at corresponding
points of the mapping. In the example of Figure 3, A= a, B = b, etc.
When the distances in the real plane are calculated during the last cycle
of the iteration that determines the mapping constants, the numerical parts
of the integrals are stored in tabular form as a function of abscissa for
the integration regions. The tabular results of the numerical integra-
tions are modified to obtain a quantity proportional to potential in the
real plane. For the first part of the interval A to B in the example of
Figure 3, '
dz
dg

1!

z'-zp dg

a
(16)

¢' - a

CI
S Hek2la) gy a)
a Veo-a

where %'< %(a + b). The first term on the right side of Equation (16)
is the quantity computed and stored during the calculation of the first
part of the distance AB [See Equations (2) - (6)]. To this term must

11



be added only the second term of the right side of Equation (16) to obtain
coordinates in the real plane as a function of corresponding z. A quantity
proportional to the potential difference across the vortex wake in the real
plane is obtained by interpolation in the tables of Z as a function of z.
For each surface, the local loading is nondimensionalized with respect to
the gross Toad.

COMPUTER PROGRAM 55VD

Computer Program 55VD has been written in the FORTRAN IV language for
use on an IBM 7094 digital computer, and has been converted to FORTRAN 2.0
for use on the Langley Research Center's CDC 6000 series computers. Figure
4 presents the overall logic of Program 55VD. In several subroutines,
internal Tlogic is used to transfer to coding associated with the configura-
tion being considered; such logic is not shown in Figure 4. Computing time
per case varies from 0.1 minute to 3 minutes with an IBM 7094, depending on
which of seven configurations is being analyzed, the number or ordinates
used in the evaluation of the geometry and drag numerical integrals, and
the rate of convergence of the iteration for the mapping constants. The
main program and the twenty-four subroutines of Program 55VD are written
on roughly 3700 FORTRAN source cards.

NUMERICAL RESULTS

To date, Computer Program 55VD has been used principally to substan-
iate the method and to determine its important Timitations. The parameter
k 1is presented in Figures 5-10 for a modest range of the geometric para-
meters of Configurations 1-5. Examples of load distributions for minimum
induced drag are presented in Figures 11-19. For wings with end plates,
Figures 11 and 12 compare exact loadings from Reference 4 with loadings
from Computer Program 55VD for Configurations 1 and 4, respectively.
Similar comparisons with results of Reference 6 are made in Figures 13
and 14 for Configuration 4. In each comparison, the results agree closely,
although the geometry analyzed by Computer Program 55VD for each compari-
son is not identical to the geometry analyzed by the referenced methods.

A precise comparison cannot be presented because of the limitations of
Computer Program 55VD that are discussed in the supplements to this report.

Another example of the loading for minimum induced drag is presented
in Figure 15 for Configuration 2. With the plotting scale of Figure 15, the
loadings on the inboard fence and the outboard fence coincide. In Figures
16, 17, 18, and 19, examples of the loading corresponding to minimum in-
duced drag are presented for Configurations 3, 5, 6, and 7, respectively.

12
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DISCUSSION OF EXPERIMENTS ON NONPLANAR WINGS

_References 10-21 regqr§ the results of experiments designed to determine
the induced drag and stability characteristics of nonplanar wings. Most

of the models are wings with end plates. These experiments are uniformly
disappointing as minimum induced drag is not obtained. None of the models
are designed properly for minimum induced drag even though induced drag

is the principal concern of most of the experiments. None of the model
wings of References 10-21 are twisted or cambered to produce the proper
loading for minimum induced drag, although Reference 10 reports experiments
with varying wing twist. Only References 15 and 21 report experiments on
models with cambered end plates, and the loading for minimum induced drag

is not described as the reason for choosing the camber in either reference.
None of the end plates are twisted. Only the authors of References 10 and
18 specifically recognize that their models are not designed to carry the
loading for minimum induced drag. The absence of such data in the litera-
ture is possibly due to incorrect extensions of the crossflow barrier ex-
planation of end plate effects. In a two-dimensional airfoil test, the wind
tunnel walls act as fully effective barriers to the crossflow about the wing
tips, and induced drag is eliminated as a result. In an analogous way, end
plates function as partially effective barriers to the crossflow, and reduce
induced drag. The barrier concept apparently leads to the supposition that
end plate planform is of prime importance to end plate effectiveness. Ref-
erences 10, 11, 13-16, 19, and 21 each contain experimental data for more
than one end plate planform, and Reference 16 reports results of tests on
fifteen end plate planforms. Reference 21 presents an "optimum" end plate
planform design that attempts to minimize end plate friction drag for a
given end plate effectiveness; the crossflow barrier explanation is the basis
of the analysis. To be sure, a change of end plate planform is 1ikely to
produce a change of induced drag because the planform change alters the load-
ing on both the end plate and the wing. Nevertheless, the end plate planform
has no significance to minimum induced drag as long as the end plate and the
wing can develop the loading for minimum induced drag. To reduce end plate
friction drag, the end plate chord can be minimized, subject to the loading
constraint. Once the loading and the planform geometry are known, the twist
and/or camber to produce the loading must be calculated for both the wing
and the end plates. For the general nonplanar 1ifting configuration, the
proper loading and the twist and/or camber must be calculated for all load-
bearing surfaces. In References 22 and 23, methods are discussed for calcu-
lating the twist of nonplanar configurations if the loading is specified.

Described in Reference 18 is an interesting use of end plates to improve
overall aircraft performance. End plates are usually considered to be a means
of reducing the drag of 1ifting aircraft, and thereby improving aircraft per-
formance in takeoff, climb, cruise, and Toiter. However, some aircraft per-
formance characteristics improve with increasing drag — for example, landing
distance and equilibrium rate of descent. A variable geometry end plate is
suggested in Reference 18 as a means of either decreasing or increasing the
drag of a given wing. The end plate would be designed to produce minimum
induced drag in the basic configuration. In the alternative configuration,
trailing edge flaps on the end plate or a pivot for the entire end plate
would be used to change substantially the loading on the end plate and the
wing, and thereby greatly increase the drag of the aircraft. Experimental
evidence is presented in Reference 18 to support this idea.
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CONCLUSIONS

A numerical method has been developed to determine accurately the
minimum induced drag, and the corresponding loading, of nonplanar wings.
The method can be applied to configurations with front views that can be
approximated by straight line segments. The success of the method depends
on an iteration that converges satisfactorily for most cases. Comparisons
of results of the method with results of known test cases show that errors
in the minimum induced drag and in the corresponding loading are of the
order of 10-4 when the method is programmed in single precision arithmetic
for an IBM 7094,

One full-scale flight test and several wind tunnel tests on nonplanar
1ifting wings have been reviewed. None of the experiments produced minimum
induced drag because none of the models were designed to carry the loading
for minimum induced drag. Proper design must include the calculation of
twist and/or camber of the wing and of the auxiliary load-bearing surfaces
after the necessary loading is determined.

14
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